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SOME RECENT RESULTS IN NONLINEAR FILTERING
THEORY WITH FINITELY ADDITIVE WHITE NOISE.

BY
i
ﬁm. ) G. Kallianpur
ﬁ%' Center for Stochastic Processes
University of North Carolina, Chapel Hill, N.C., U.S.A.

:?; .
gl
;gj 1. Introduction.
ﬁg Nonlinear filtering theory has been developed over the last few decades, largely,
ﬁ% as an application of stochastic calculus. The theory (which will be referred to below
:és' as the conventional or stochastic calculus theory) has led to many important new ad-
" vances in the subject and, indeed, given rise to problems of interest to stochastic
P;‘ calculus itself. When it comes to statistical applications, however, the approach
ﬁ§ based on stochastic calculus has many shortcomings which originate from the use of
gﬁ: . the Wiener process as a model for noise. This point has been recogni;ed by many

writers and has led to attempts to create a pathwise or robust version of the theory
S (For details, see the references in [1]).
: In this article we present a very brief outline of an alternative approach deve-
b loped recently in collaboration with R.L.Karandikar. In this theory, the Wiener
e process is replaced by finitely additive (f.a.) Gaussian white noise in the filtering
& model in which we also assume the independence of signal and noise.
;:f Some of the new features of the white noise filtering theory are the following:
i (1). No semimartingales or stochastic integrals need be used.

(2). A complete solution of the nonlinear filtering or prediction problem in the
N conventional theory involves, in general, solving a stochastic partial diffe-
I rential equation (SPDE). The latter is now replaced by "ordinary" partial
x differential equation in which the observation y of the white noise model ir—q
enters as a parameter in the coefficients.

&L ’ (3). Infinite dimensional (specifically, Hilbert-space valued) signal processes

W can be handled more naturally in the new set up and, in fact, the nonlinear

k} filtering problem at this level of generality has been completely solved.

R (4). The white noise theory yields results consistent with (and in most cases, ,
ﬁ?; under less restrictive conditions) the robust form of the conventional theory.
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i
0o Before .. .cribing our main results on filtering theory it is necessary to introduce
fgx‘ the terminology and some of the basic definitions of the white noise calculus that
§§5 enable us to obtain a suitable definition of conditional expectation. These definitions
ff% are more inclusive than the ones giver in some of our previous publications. (A1l
o references relevant to this article will be found in [1]gr[2]). A detailed development
iﬁg cannot be presented here for 1a§k of space and will be available in [2].
N
g
. 2. Preliminaries on finitely additive white noise calculus.
g‘g Let (R,A) be a measurable space and let H be a real separable Hilbert space with
Eé\ inner product and norm denoted respectively by (,) and |:|. Denote by P(H), the
'ﬁk' family of orthogonal projectors on H with finite dimensional range. For P € P(H)
ji  define Cp = (P '8, a Borel set c Range P}. Let C =P€%(H)CP . Llet E=axH
ﬁﬁ:j and define E to be the field n % H) Ep where Ep 1is the product o-field AxCp.
Sﬁﬁ (E,E) is called a quasicylindriga{ measurable space. A quasicylindrical probability
s (QCF; B on (E,E) is a finitely additive measure with B(E) = 1 and such that its re-
X i: striction Bp to Ep is a (countably additive) probability measure. For our purposes,
el the most important example of a QCP is obtained as follows. Let T be a complete
ah& probability measure on (Q,A) and m, the canonical Gauss measure on (H,C), i.e.,
o the f.a. measure with characteristic functional exp{-3|h|2}. The probability measures
E_; mémp on Ep are consistent and determine on (E,E) a unique QCP o such that

’a' \ ap = MBmp . We write o =M6m.

B A function f defined on E and taking values in a Polish space S 1is called a
cylinder function if f(w,h) = f(w,(h,hy),...,(h,h,)) for some hy,...;h, in H and
) some measurable function f,: QxR" - S, Let B8 be a QCP on (E,E). With each cy-

‘ linder function f is associated a lifting Rg(f) which is a random variable (r.v.)

RO on a "representation” propability space (&,A,M), the class of S-value d r.v.s. being deno-
- ted by L(3,A,[;S). The precise definition of a 1ifting requires the notation of the rep-
ﬁs: resentation of a QCP B and will not be given here. (See [1]). We need a class, wider

:é' than the class of cylinder functions for which a 1ifting can be defined: f€ L(E,E,R;S)

Iy

fﬁk if and only if for each P € P(H) (= a set directed by < where P, <P, if Range P,

< Range P,), fplw,h): = f(w,Ph) is Ep/B(S) - measurable and the net {RB(fp), P€P(H)}
«?,: converges in fl-probability to a limit which is defined to be the 1ifting Rg(f) of f.

'&J It can be shown that L(E,E,B:S) does not depend on the choice of representation of 8.
i

il Integration w.r.t B8 is defined as follows: Let

pI L,(E,E,B) = {f € L(E,E,B;S): [|Rg(f)[diT <} .

A:;. . 3

~

For f € L'(E,E,B) define [fdB = IRB(f)dﬁ. The value of the integral does not
£
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oy depend on the choice of representation. We note that (H,C) is a special example
We of a quasicylindrical measure space.

. F.a. statistical model of filtering and estimation.

Definition. The identity mapping e on H as a mapping from (H,C,m) to (H,C) is

B0 called Gaussian white noise. Let £: Q+H be a B(H)/A -measurable map. Writing
- E(w,h) = £(w) and e(w,h) = e(h), define y: E-+H by

#& (1) y=§&+e

3\'

M

For (w,h) € E, y(w,h) = E(w) + e(h) . (1) is the abstract model for filtering,
Kl y being the observation and £, the H-valued signal r.v.
Definition of a quasi cylindrical map (QCM) and conditional expectation:

a' Let (E',E') be a quasi-cylindrical measurable space and ¢: E-E' such that
o wP' € P', 3P € P for which ¢ '(Ep:) S Ep. Then ¢ is called a QCM.
& We mention some examples of QCM's.
‘.O
f:: (i) Let Q be an orthogonal projection on H and H' = QH.
@ Then Q: H-H' is a QCM.
[
vl (ii) 'y given by (1) is a QCM from (E,E) to (H,C).
ol
o (ii1) Qy 1is a QCM from (E,E,a) to (H',C').
%f, In our theory conditional expectations will be defined only with respect to QCM's.
Let f € L'(E,E,B) and let ¢ be a QCM as defined above. Suppose the following con-
ﬁ& ditions are satisfied:
».\: (a) There exists g € L(E',E',B', R), such that go¢ € L'(E,E,B,R) and
‘i-
& Rgr(g) = Rglgod);
w (b) For all F' €E', [flp:(¢)dB = [god1p:(0)dB .
L E E
fh Then we define the conditional expectation
1)
4'.
R EB(f|¢) =
2 ] The class of all g satisfying (a) and (b) will be denoted by U(¢) .
QS Remark 1. The existence of g and hence that of the conditional expectation is not
' asserted in the definition - an important departure from the situation in countably
f: additive measure theory. Moreover, the conditional expectation, when it exists, is
“5 defined on the observation space itself and not on some representation space.
W,
p
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Bayes Formula and Zakai equation.

A finitely additive version of the Bayes formula is the principal tool in our theory.

Theorem 1. Let y be given by the abstract statistical model (1). Let Q be an
arbitrary orthogonal projection on H, H™ = QH. Let g be an integrable function
on (Q,A,M). Then E,L(g]Qy) exists and is given by the formula

E ] | O'Q(gaQ.Y)
;' (1 9 Q.y = 00(19Q-,Y)
1 where for h' € H'.
aq(g:h') = fglw) exp| (h,06(0)) - Hlog(w)|?|an(u) -
Q
e We give an idea of the proof: Without loss of generality, assume g 2 0 and
'
v Jgdm = 1. Let
C ®g(C') = jg(w)1c.(Qy(m,h))da(m,h) when C' € C'.
E
ﬁ Also 1let m' be the canonical Gauss measure on H', and
R
W u'(B) = fg(w)1g(g(w))dm(w), (B a Borel set in H).
Y]
Then
. 84(C*) = f m*(C'-k)du' (k) and &, <<m"
g iy g
dé
K with Radon-Nikodym derivative aﬁg (h*) = oQ(g,h') . Hence from the definition of
X n' = afQy]~" we have
.~ 1 t GQ(g’h') i )
‘bg(c ) = I{Illcl(h )de (h ) .
]
‘ i 1 now that 08 ¢y )
: Both assertions of the theorem follow once we show that EBTTTTT € u(Qy) .
‘
Y
Applications to nonlinear filtering theory.
' We now specialize the model (1) to the following:
V (2) Y = hy{Xs) +eg, 0<ssST, where
[)
(i) X =(X¢, 0 sssT) is a Markov process taking values in a Polish space S
) and defined on (2,A,P);
. T
3 (ii) h: [0,TIxS - R™ is a measurable map such that Ilhs(xs)lzds (o P-a-s ;
" 0
!
e 1 o e e L P P L S L S A A T S A
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Let H be the real Hilbert space {n: [0,T]-R™ =: |n|€L2[0.T]},

Es(w) = hg(Xg(w)), 0<ssT, i.e. E(w)€H. The precise measurability
conditions on X and h will be omitted;

(iii) e = (eg) 1is Gaussian white noise on H, independent of X.

In this model (ys) is the observation process defined on the finitely additive
probability space (E,E,P). Let Qi be the orthogonal projection with range

T
Hy = {nEIi: {Inslzds = 0} .

The Bayes formula of Theorem 1 now takes the following form which is the starting
point for deriving the necessary differential equations for the optimal filter:

Gt(f’Y)

For f: SR such that foXy € L'(Q,A,n), Ea[f(Xt)[Qty] = 5 Toy7 where
t s

(Qey)(s) = y(s), for 0ssst, =0 for t<sst and

f,n) = Jf T Jnind( !
oy(Fun) = (Xt(w))exp[j§1 Inddxsoas -

m .
! L (] (X (w)Pds Jan(w) -

Assume that X is an RY-valued diffusion with extended generator

2
Ly=5 £ a; (t x) —‘v——— + T bj(t, X) —
t 7- »J X axJ i ax1

We shall make the natural assumption that Co’z([O,aﬂ xR4) €D. Then the "unnorma-
lized conditional expectation" o4(f,y) satisfies the following differential equation
which is the finitely additive or white noise version of the Zakai equation of the
conventional theory.

T
Theorem 2. Let EIIhS(XS)IZdS <o . Then for y € H, and f €D ({L})
0

(= domain of the generator Li), a—ot f,y) = °t(Lt ) + 21 °t(h f,y)yJ where
J:

Toe - 2

Lof = LeF - glhg[2F .

If o(f,n) = Id x)pg(x,n)dx , then p.(x,n) is called the unnormalized conditio-

nal density of the optimal filter. We now state one of the typical results pertaining
to the filtering problem of a d-dimensional Markov signal process. It privides an
alternative to solving the analogous stochastic partial differential equation (equiva-
lently, an infinite dimensional SDE) for the conditional density.

Theorem 3. Assume the following conditions

(i) For all 1,j, a;j are bounded, and
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(i) T ajy(t.x)zyz; 2 K1|z|2, (Ky>0) for all (t,x) and z=(zy,...,z4)€RA.

-, -

. i,j=1

D 2

2 a5 ¥7ayy 3b; ) . .

Y (i14) 35, —F» -7 b, — are locally HGlder continuous functions
‘ ax ax'ax? X

satisfying the growth condition |g(t,x)| s K2(1+|x12)§ »  (0<Ky <) for

all (t,x). .
L k 2, k k
b (iv) hk, ahi . aih - and %%? are locally Holder continuous in (t,x) .
' 9X ax ' axJ .

(hk are the components of the vector h).

-

% k k 2.k k k k

K (v)  hK, %, T aij&u z a1J( 3h 3h1, . 3“.) and ;bigﬂi- satisfy
J axy X BxJ ax axJ 1 ax

! the growth condition in (iii). Finally note the following assumptions about

)

h the initial random variable X,

‘t

[N

(vi) Eupaud2<m for some a>0 ;

(vii) The distribution of X, has a continuous density ¢ satisfying

E lo(x)| < exp{K3(1+|x|2)}1"'€ for some e>0 , and a constant K;>0 .
4
3 Then
! (a) For every y € H, there is a unique pt(x,y) which satisfies
R ap(xsy) d 5. .5 1 2
‘ (3) —— = Ltpt(x,y) + <J§1 he (x)y Y} - flht(x)l )pt(x,y) for a.e.t.,
K with the initial condition p,(x,y) = o(x) and
. m t .
Py (Xs¥) -eXp[ 3 hJ )Ides} €6
- j=1 0°S
n..
; where G is the class of C'»2([0,T]x RY)  functions satisfying the growth
! condition in (iii).
: (b) For all y € H, the unique solution pt(x,y) of (3) is the unnormalized .
" conditional density of the filtering problem.
$ (c) The mapping y-+pt(x,y) is continuous in the sense that if y,-y in H,
then p,(-,y,)-»p (-,y) uniformly on compact subsets of [0,T]x Rd .
& Remark 2. If only conditions (ii), (iii) and (vii) are assumed and h is assumed
; to be locally Holder continuous, then Egn (3) can be shown to have a unique solution
r in the class G, provided y€H, where H, = {y€H: y, is Holder continuous}.
ANl I v—»:-y gL SRR
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Remark 3. A special application of the previous remark is to the so-called cubic
sensor: Take d=2, m=1 and hs(x) =z h(x) = x? +xg , X =(x1,x2) . Then h is
locally Holder continuous and hence for every Y€H,, the Zakai equation (3) has a

unique sclution in G provided the drift and diffusion coefficients satisfy conditions

(i) - (iii).

3. Hilbert space-valued Markov signal. Measure-valued optimal filter.

Suppose that in the statistical model y¢ = hy(Xg) +e;, 0sssT, h is a measu-
rable function from [0,T] xS-K where K 1is an infinite dimensional separable
Hilbert space such that

1 2
£|hS(XS)Ide (o M-a.s. ,

and e=(eg) 1is Gaussian white noise on H = L2([0,T];K) . This is a situation where,
the state space of the signal process is essentially infinite dimensional. In this
case, there can be no conditional density since there is no Lebesgue measure in Hilbert
space and one can only deal with measure-valued equations. Measure-valued SDE's of

Ito type for the optimal filter have been studied by Kunita and by Szpirglas.

In the white noise context, measure-valued differential equations (in which the
observation path y occurs as a parameter) have been obtained and the existence and
uniqueness of solutions have been established by Kallianpur and Karandikar

in a recent paper (See [2]). Here, for the sake of completeness we state two of
the results. Let Qi be the orthogonal projector on H with range Hy = {y € H:

T
fIn(u)!2dn=0}. If B is any Borel set in the Polish space S and né€H then
v K

define

 Tg0Kp (@) e {(n,0p8)) - J10E(w )12} an(w)

In the above expressions, the inner product in H 1is given by

T

(n,»n,) = I(n](S),nZ(S))KdS , Inll = (n,n) and &: (Q,A,)-H

is defined by

;
Er(w) = h (X (w)), 0stsT if élhs(xs)lids Cw |

= 0 otherwise. Let M(S) be the class of countably additive, finite Borel measures
on S. Then for each n€H, T¢(n) and F¢(n) belong to M(S). They are, respectively,

T TS AL A LA N
ARG TN ) .
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the unnormalized and the (normalized) conditional distribution of X -

Theorem 4. For 0sStsT,

and
Tyly) s Fely) € L*(E,E,a;3M(S)) .

Here the star denotes the subclass of elements f in L(E,E,a;M(S)) s.t. Ra(foPk)a
R,(f) in probability for all P, 31, (P} S P(H).
We shall now impose the further restriction |hg(x)|gx s q(s) Vv x € S where q is a

T
measurable function on S s.t. qu(s)ds o ., Let {Tt} be the one parameter semi-
0

group associated with it = (t,X¢) . Let L be the extended generator of {T¢} with
domain D. The precise definitions of Ty and L will not be given here. We use
the notation <f,u> for [fdu where u € M(S).

Theorem 5. For all ye€EH, {Ft(y)} satisfies the equation
t
<f(t,'),Ft(Y)>==<f(0,'),F0(y)>'*I<(Lf)(s,°),Fs(Y)>'dS
0
t 1 2
+ é<{(hs(~),ys),< - §lhs(-)|K}f(s,-),Fs(y) > ds

(4)

for all f€0D. ;

Furthermore, Ty(y) is the unique solution of (4) in the class of Borel measures {K}
on S such that for all Borel sets A,

(5) Kt(A) is a bounded, measurable function of t, and K (A) = En1A(XO) .

A similar result holds for Fi(y). The unique solution can be obtained by a
sequence of approximations Fg(y) which converges to T(y) uniformly in t, in
total variation norm in M(S) .

Markov property of the optimal filter.

The optimal nonlinear filter in the white noise theory provides a concrete example
of a continuous time Markov process defined on a f.a. probability space. From Theorem 4
we see that Ft(y) is an M(S)-valued family of r.v.'s on (E,E,a). The process
Fy(y) 1s a Markov process on (E,E,a) w.r.t. {Qiy} in the following sense:




.
K (i) There exists g € U(Qpy) s.t. Ty(y) = g(Quy) for all t.
)
w
et (ii) For 0<$s<t,,...,t, and for all f € Ch(M(S)K), (KyS,t(,...,t arbitrary),
'a i k b 1 k
\n‘
» £l FTe, )0 +es T YD) 0gy] = 9,(7503)
; for a suitable function g, .
h‘.
S We observe without going into details that the filtrations (FI) w.r.t. which the
‘} Markov property is defined in the conventional theory is now replaced by the family of
. QCM's {Qty}, t €R, .
X
‘:‘
Ai 4. Consistency of the white noise theory with the stochastic calculus approach.
;ﬁ Most of the robustness results have been obtained only for the case when the signal
x X is an R3-valued diffusion. The cases when (a) (X{) is the solution of a S.D.E.
o driven by a general process of independent increments and (b) X¢ is a Markov process
l,
taking values in an infinite dimensional Hilbert space will not be considered here.
2 Problem (a) has recently been studied by H.P.Hucke in his thesis. Problem (b) remains
b to be solved.
‘fj An easily verifiable "internal" robustness property is that Ft(hn,-) - Ft(h,-) in
total variation norm as h, - h in H. Let (&,A,N) = (2,A,m) 8 (Q,,A,.M,) , where
i:l - the second factor is m-dimensional Wiener space. Suppose (Yt) is the observation
o process of the conventional filtering model defined on ({,A,N) and let F{ be the
- observation filtration. By choosing a lifting R, of o to (Q,A,i) we obtain
the following result which reveals the underlying connection between the two theories:
B
N Theorem 6. If f: R =R s.t. E[f(X()| <= , 0stsT, then
> | y
2 Ra[Ea(f(Xt)!Qty)]=Eﬁ<f(Xt)iFt>, a.s.
- Let Qa = {wy€Q: wy(+) is Holder continuous}. Our central result on robustness is
S
o the following
s, Theorem 7. Assume the conditions of Theorem 3. Then there exists a continuous
N function p (-,Y): Q*=C([(0,T) 8RY) which is a version of the unnormalized conditional
;2; density of Xt given Fz with the property that ﬁt(x,Z) = pt(x,z) , 0stsT,
- ;
_ x € R9 where Zy = Jzgds, z€H .
i} 0
o
.
a0
""-,
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Filtering models with non-white Gaussian noise.

We may examine the question of robustness of the white noise approach from the point
of view that is more usual in the statistical theory. Roughly speaking, our results
are robust in the sense that the optimal filter changes only slightly if the Gaussian
noise is no longer white but has a covariance operator which is close to the identity.
Wie have not been able to prove this statement in its greatest generality. To our
knowledge this question is not completely settled even in the conventional theory.

We have been able to establish this kind of robustness for a.f.a. non-white Gaussian
process whose covariance I has a bounded inverse. For reasons of space we cannot
go into this work, done in collaboration with H.P.Hucke and R.L.Karandikar, and we
content ourselves with stating the Bayes formula for this model.

Theorem 8. Let the filtering model (1) be given on the quasicylindrical probability
space (E,E,az) where (E,E) 1is as before, ay =T O my and mg is the f.a. Gaussian
measure on (H,C) with zero mean and covariance operator £ . It is assumed that the
selfadjoint, positive operator X has a bounded inverse. Let g be a M-integrable
r.v. Then E_ (gly) exists and

%

_05(9,y)
EOLZ(gb’) = m where

'&(w)“z]dn(w), heH .

(9.0 = folw) exp | (= E(whh)- 7z

A direct proof is somewhat lengthy. A simpler way is to reduce the problem to the
white noise case already considered. This can be done by introducing a new inner
product in H, [h,k] = (£"'h,k) on which ms is a white noise measure.

[ wish to thank the Royal Norwegian Research Council and Professor D.Tjestheim for
the invitation to visit the University of Bergen where this article was written.
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